The protective role of the pericellular matrix in chondrocyte apoptosis.

نویسندگان

  • H Charlie Peters
  • Thomas J Otto
  • J Tyler Enders
  • Wu Jin
  • Berton R Moed
  • Zijun Zhang
چکیده

INTRODUCTION This study was designed to quantify the role of the pericellular matrix (PCM) in chondrocyte apoptosis using chondrons, which are a cartilage functional unit including a chondrocyte and its associated PCM. METHODS Chondrocytes and chondrons were enzymatically isolated from human articular cartilage and exposed to monosodium iodoacetate (MIA) and staurosporine for apoptosis induction. Chondrons were defined by the presence of type VI collagen, a basic component of the PCM. Apoptosis of chondrocytes and chondrons was measured with annexin V binding by flow cytometry and verified with terminal dUTP nick end-labeling staining. In a separate experiment, isolated chondrocytes were treated with soluble type VI collagen, before or after apoptosis induction with MIA, and cell death was measured by the activity of LDH and terminal dUTP nick end-labeling staining. RESULTS Chondrocytes treated with MIA incurred 27% cell death, compared with 12% in chondrons. On treating with MIA, 9% of chondrocytes underwent apoptosis, compared with only 1.6% of chondrons. Similarly, staurosporine induced 13% apoptosis in chondrocytes, whereas it was 3% in chondrons. Preincubation of type VI collagen effectively prevented chondrocytes from MIA-induced cell death. After apoptosis was induced with MIA, however, treatment with type VI collagen failed to rescue chondrocytes from death. CONCLUSION The PCM, a native microenvironment of chondrocytes, protects chondrocytes from apoptosis. Type VI collagen is a functional component of the PCM that contributes to the survival of chondrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of Floating Chondrons in Cartilage Tissue Engineering

BACKGROUND Dedifferentiation of chondrocytes remains a major problem for cartilage tissue engineering. Chondrocytes loss differentiated phenotype in in vitro culture that is undesired for repair strategies. The chondrocyte is surrounded by a pericellular matrix (PCM), together forming the chondron. PCM has a positive effect on the maintenance of chondrocyte phenotype during culture in compar...

متن کامل

Hyaluronan receptor-directed assembly of chondrocyte pericellular matrix

Initial assembly of extracellular matrix occurs within a zone immediately adjacent to the chondrocyte cell surface termed the cell-associated or pericellular matrix. Assembly within the pericellular matrix compartment requires specific cell-matrix interactions to occur, that are mediated via membrane receptors. The focus of this study is to elucidate the mechanisms of assembly and retention of ...

متن کامل

Assembly of a chondrocyte-like pericellular matrix on non-chondrogenic cells. Role of the cell surface hyaluronan receptors in the assembly of a pericellular matrix.

In this study, we have examined the capacity of various cell types, which express cell surface hyaluronan receptors, to organize a chondrocyte-like pericellular matrix when given chondrocyte-derived extracellular matrix macromolecules exogenously. The assembly of a pericellular matrix was visualized by a particle exclusion assay. Without the addition of exogenous macromolecular components, none...

متن کامل

Changing Roles of Matrix Metalloproteases and Their Inhibitors, TIMPs, During Tumor Progression and Angiogenesis

Inhibition of matrix-metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs) has been shown in vivo to decrease metastasis and tumor-associated angiogenesis. Our laboratory is interested in understanding the role of these proteins at the pericellular microenvironment of tumor and endothelial cells. Secretion of MMPs by tumor cells enables the migration, invasion and metasta...

متن کامل

Chondrons from articular cartilage. V. Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy.

The pericellular microenvironment around articular cartilage chondrocytes must play a key role in regulating the interaction between the cell and its extracellular matrix. The potential contribution of type VI collagen to this interaction was investigated in this study using isolated canine tibial chondrons embedded in agarose monolayers. The immunohistochemical distribution of an anti-type VI ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 17 15-16  شماره 

صفحات  -

تاریخ انتشار 2011